Studies of the Effect of Comfort and Air Quality on Staff Productivity -The Indoor Health and Productivity **Project**

Energy 2003, Orlando, FL 20 August, 2003

Satish Kumar Lawrence Berkeley National Laboratory

Indoor Health and Productivity **Project**

URL: http://www.IHPCentral.org

Motivation

- Lack of credible and reliable information
- Wide gulf between research and practice
- Interpretation and generalization of a research project is a problem
 - Controlled experiment
 - Confounding variables
 - Lab vs. field setting
 - Underlying assumptions and limitations
- Policy issues, research questions, practical implications (standards, guidelines, best practices)

Objectives

- Research and Policy Analysis
 - · Critical reviews of existing IHP literature
 - Publication of summary articles in journals
 - Help formulate an IHP research agenda
 - Take advantage of cost effective opportunities to advance knowledge about means of improving IHP.
- Public Education and Information Dissemination
 - Development of an online bibliographic database (with abstracts) of IHP literature.
 - Highlight important research findings (both new and old)
 - Answer frequently asked questions (FAQ) on the topic of IHP

Sponsors

- Subcommittee on Construction and Building (C&B)
 - Department of Energy
 - Environmental Protection Agency
 National Institute of Standards & Technology (NIST)
- California Energy Commission
- Southern California Edison
- Potential Sponsors
 - Federal Energy Management Program
 - National Institute of Health
 - General Services Administration
 - State Energy Organizations
 - Private organizations interested in IHP related issues

Partners

- Current partners
 - National Research Council
 - University of California
 - Carnegie Mellon University
- Harvard School of Public Health
- Potential partners in a broader coalition
 - Office Productivity Network, United Kingdom (http://www.officeproductivity.co.uk/)
 - International Facility Managers Association (IFMA)
 - National Research Council of Canada
 - Danish Building and Urban Research . Lighting Research Office, EPRI
 - Lighting Research Council, RPI

Results from IHP Projects/Reviews

Does Indoor Environment in Schools Influence Student Performance?

- Indoor environments in schools are of particular public concern because:
 - School buildings are more likely to have environmental deficiencies because of deferred maintenance policy
 - Children breathe higher volumes of air relative to their body weights and are actively growing; greater susceptibility to environmental pollutants than adults.
- Research suggests that student performance may be adversely affected by
 - low ventilation rate
 - less daylight or light

Source: Heath and Mendell (2002)

Direct relationships between measured IEQ factors and performance. | PERFORMANCE OUTCOMES | STEDY FRATURES | MEASURED INC FACTORS | Reference | FOLLUTANT | EXPOSURES AND PARAMETERS | CONTROL | FOLLUTANT | FOLIUM |

Source: Heath and Mendell (2002

1

Direct relationships between IEQ related characteristics of buildings and performance.

Impact of Daylighting on Students Learning

- Study: 21000 students, 2000 classrooms in three school districts
- Focus: Impact of daylighting in classrooms on students' learning
- Conclusions: Daylighting helps improve standardized test scores of students by 15 – 26% in one of the school districts
- Major implications: Design of adequately dimensioned and positioned windows and skylights, lighting control strategies
- Other Implications: Test scores are driving school budget decisions; the study provides a compelling case for daylit classrooms to improve students' learning process

Source: Heschong (1999)

Associations Between Classroom CO2 Concentrations and Student Attendance

- Focus: Exploring the association of student absence with measures of indoor minus outdoor CO2 concentrations (dCO2)
- Dataset: Absence and dCO2 data collected from:
 - 409 traditional and 25 portable classrooms
 - 14 schools in 6 school districts
 - Washington and Idaho
- Variables included in Multivariate Modeling:
 - Classroom attributes (HVAC systems)
 - Student attendance
 - School-level ethnicity, gender and socio-economic status

Source: Shendell et. al., 2003 (submitted to Indoor Air)

Associations Between Classroom CO2 Concentrations and Student Attendance

- Conclusions:
 - 45% classrooms studied had short-term indoor CO2 concentrations above 1,000 ppm
 - A 1,000 ppm increase in dCO2 was associated with a 0.5 to 0.9% decrease in annual average daily attendance (ADA) = 10% to 20% increase in student absence
 - Outdoor air rates estimated from dCO2 and other collected data were not associated with absence
 - Annual ADA was 2% higher in traditional than in portable classrooms
- Practical implications: Study provides motivations for larger school studies investigating impact of dCO2 and accurately measured ventilation rates on student attendance/performance.

Source: Shendell et. al. (to be submitted to Indoor Air Journal)

Estimates of Potential Health Benefits and Productivity Gains from Improved Indoor **Environments**

Source of Productivity Gain	Potential Annual Health Benefits in US	Potential U.S. Annual Savings or Productivity Gain (1996 \$U.S.)
Reduced respiratory disease	16 to 37 million avoided illnesses	\$6 - \$14 billion \$23 - \$54 per person
Reduced allergies and asthma	8% to 25% decrease in symptoms in 53 million allergy sufferers and 16 million asthmatics	\$1 - \$4 billion \$20 - \$80 per person (with allergies)
Reduced sick building syndrome symptoms	20% to 50% reduction in symptoms experienced frequently by ~ 15 million workers	\$10 - \$30 billion ~\$300 per office worker
Improved worker performance from changes in thermal environment and lighting	Not Applicable	\$20 to \$160 billion

Some Health Effects Associated With **Indoor Environments**

11.0 D 1.11	
U.S. Population	
Affected Annually	
~ 13,000	
500-1000	
~45,000	
~260 million	
50 million	
16 million	
16 million	
	1
	- 13,000 500-1000 -45,000 -260 million 50 million 16 million

Communicable Respiratory Disease

- Annual Economic Significance of Common Respiratory Illnesses*
 - 180 million lost work days
 - 120 million additional days of restricted activity
 - Health care costs ~\$36 Billion (\$140/p.)
 - Total costs ~\$70 Billion (\$270/p.)

*All estimates in 1996 US \$

Health Benefits From Higher **Ventilation Rate**

- Study based on 3,720 employees in 40 buildings
- Sick leave data of office workers metric to evaluate
- Association between ventilation rate, humidification and short-term sick leave
- 1.2 to 1.9 days of increased sick leave per person per year, depending on age and gender in spaces with lower ventilation rate

Source: Milton et al. (2000)

Ventilation Rates and SBS Symptoms: Results of a Critical Review • With Lower Vent. Rates • 20 of 27 studies found statistically significant increase in symptoms • 9 studies found >80% increase in prevalence of at least one symptom • Roughly \$20 billion in associated productivity gains • Source: Seppanen et al. (1999)

The largest publicly accessible online bibliography on this topic Approx. 1,100 papers from major journals and conferences Approx. 800 papers have online abstracts User-friendly search engine Available at www.ihpCentral.org Updated every two years Great tool in conducting research on IHP

Major Accomplishments

- Developed a cost-effective approach to conduct quality research
- Developed an umbrella group for international collaboration and voluntary work in the field of IHP
- In some case, build on the existing research and enhanced the value of the work through supplemental research
- Consolidated previous fragmented efforts

Associations or Causal Relationships? Health/ Environmental **IEQ Measures** Outcome Improve Thermal Comfort Minimize Energy Use Higher Ventilation Rate Improve Health Better Lighting Quality Improve Worker Incorporate Daylighting Performance Improved HVAC O&M Access to Natural Environment "Green" Materials & Improved Personal Furnishings Controls

Future Directions

- Conduct more research to reduce uncertainties about the costs and benefits of specific measures.
- Help policy makers take effective public health actions based on scientific evidence and combining it with common sense.
- Conduct more research to provide justification for improving IEQ in schools and office environment.
- More closely explore the link between IEQ and energy consumption.

Get Involved

- IHP Project model pools funds to sponsor studies that address key research questions
- The model is very effective in getting big bang for your bucks
 - Help advance state of the art in IEQ
 - Help develop sound public policy and IEQ standards based on quality research

Contact Information

■ IHP Web Site: http://www.IHPCentral.org

Principal Investigator: William J. Fisk

Head, Indoor Environment Department

Lawrence Berkeley National Laboratory
Email: WJFisk@lbl.gov, Phone: (510) 486-5910

 Technical Project Coordinator Satish Kumar

Scientist, Lawrence Berkeley National Laboratory Email: sKumar@lbl.gov, Phone: (202) 646-7953

